SHOW ALL WORK

Given the following thermochemical equations: 1.

$$2Cu_{(s)}$$
 + $O_{2(g)}$ \rightarrow $2CuO_{(s)}$

$$\Delta H^{\circ} = -155 \text{ kJ } \frac{1}{3}$$

$$Cu_{(s)}$$
 + $S_{(s)}$ \rightarrow $CuS_{(s)}$

$$\Delta H^{\circ} = -53.1 \text{ kJ} \frac{1}{2}$$

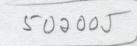
$$S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$$

$$\Delta H^{\circ} = -297 \text{ kJ } -\frac{1}{3}$$

$$4\text{CuS}_{(s)}$$
 + $2\text{CuO}_{(s)}$ \rightarrow $3\text{Cu}_2\text{S}_{(s)}$ + $\text{SO}_{2(g)}$

$$\Delta H^{\circ} = -13.1 \text{ kJ} \frac{1}{3}$$

calculate the value of ΔH° (in kilojoules) for the reaction


$$CuS_{(s)}$$
 + $Cu_{(s)}$ \rightarrow $Cu_2S_{(s)}$

because SO2 must be concelled.

How many joules are required to raise the temperature of 0.500 2. kilograms of liquid water by 24.0 °C? How many calories are needed?

50008 J

(12 000 cal

Why do the oceans have a moderating influence on the summer and winter temperatures of landmasses along their shores?

Large Specific heat of How warms in coldwealter

4. A metal specimen with a mass of 25.467 g was heated to 100.0°C in boiling water. The sample was quickly dried and placed in a styrofoam cup that contained 15.0 g of $H_2\text{O}$ having a temperature of 24.3°C. The mixture was stirred quickly and the temperature of the water rose to 31.2°C. Calculate the specific heat of the metal. $Q_{\text{netul}} = \left(25.467_{\text{S}}\right) C_{\text{McLul}} \left(100.0-31.4\right)$ $Q_{\text{us}} + C_{\text{mcLul}} \left(100.0-31.4\right)$

(Q 6,32)

a gamed = a lost

(25.467g)(CMotal) (68.8) = (15.0) (4,184) (6.4)

$$C = O_{25}$$

5. The combustion of 1 mole of benzene, $C_6H_{6(l)}$, to produce $CO_{2(g)}$ and $H_2O_{(l)}$ liberates 3271 kJ when the products are returned to 25°C and 1 atm. What is the standard heat of formation of $C_6H_{6(l)}$ expressed in kilojoules per mole?

$$C_{6}H_{6}Q_{1}^{+} + 7\frac{1}{2}O_{2}G_{3}^{-} + 3H_{2}O_{2}G_{3}^{-} + 3H_{2}O_{2}G_{3}^{-$$

6. What is heat energy? By what mechanism does heat flow from a hot object into a cool object?

Rubber (6.11)

Colleren of Fact moving Particle (hot) with Slower moving Particles (Slow) at interface. En transfered from High to low.